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Abstract
We investigate the asymptotic properties of formal integral series in the
neighbourhood of an elliptic equilibrium in nonlinear 2 DOF Hamiltonian
systems. In particular, we study the dependence of the optimal order of
truncation Nopt on the distance ρ from the elliptic equilibrium, by numerical and
analytical means. The function Nopt(ρ) determines the region of Nekhoroshev
stability of the orbits and the time of practical stability. We find that the function
Nopt(ρ) decreases by abrupt steps. The decrease is roughly approximated
with an average power law Nopt = O(ρ−a), with a � 1. We find an
analytical explanation of this behaviour by investigating the accumulation of
small divisors in both the normal form algorithm via Lie series and in the
direct construction of first integrals. Precisely, we find that the series exhibit
an apparent radius of convergence that tends to zero by abrupt steps as the
order of the series tends to infinity. Our results agree with those obtained by
Servizi G et al (1983 Phys. Lett. A 95 11) for a conservative map of the
plane. Moreover, our analytical considerations allow us to explain the results
of our previous paper (Contopoulos G et al 2003 J. Phys. A: Math. Gen. 36
8639), including in particular the different behaviour observed for low-order
and higher order resonances.

PACS numbers: 05.45.−a, 45.10.−b

1. Introduction

Formal integrals and normal forms in the neighbourhood of an elliptic equilibrium are well-
studied tools of the canonical perturbation theory. The interest in formal series stems from
the fact that despite their divergence, demonstrated by Siegel (1941) as the effect of the
accumulation of the so-called small divisors, such series have asymptotic properties which
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render them useful in a number of applications. The remainder of a formal series at order
r can be estimated as Rr ∼ r!ρr , where ρ is the distance from the elliptic point (e.g.
Giorgilli (1999)). For any fixed ρ, limr→∞ Rr = ∞. However, for ρ small enough, Rr

initially decreases, as r increases, and it can go close to zero before it starts increasing,
for r still larger. A particular example, for ρ = 0.001, is given in Poincaré’s Méthodes
Nouvelles (Poincaré 1892). If we truncate the series at order r = Nopt where the remainder
is minimal, then, provided that this remainder is small, the truncated formal series induce a
dynamics quite close to the dynamics of the true system for very long times. In particular, the
behaviour of the functions Rr(ρ) and Nopt(ρ) allows us to prove a Nekhososhev (1977)-like
result for the approximate constancy of formal integrals, namely that the variations of such
integrals remain bounded over times exponentially long in the inverse of ρ. Furthermore,
truncated expressions of the formal integrals are known to reproduce theoretically, with great
accuracy, the invariant curves corresponding to invariant KAM tori on a Poincaré surface
of section (Contopoulos and Moutsoulas 1965, Gustavson 1966, Kaluza and Robnik 1992,
Contopoulos et al 2003). In this respect, the limit Nopt → 0 provides interesting information
on the dynamics, since it is connected with the phenomenon of breakdown of the invariant
tori and with the introduction of a large degree of chaos in phase space. Such properties
of the formal series render them useful in a wide spectrum of applications, ranging from
atomic phenomena (e.g. Eckhardt (1986)) up to the scales of the solar system and of galactic
dynamics (see Contopoulos (2002) for a review).

Now, the relation Rr ∼ r!ρr is just a rough representation of the true function Rr(ρ) the
details of which depend crucially on a number of factors such as the dimension of the system
and the number theoretical properties of the frequency ratios of the associated linearized
system around the elliptic equilibrium. The purpose of our study is exactly to determine
the detailed behaviour of the functions Rr(ρ) and Nopt(ρ) both by analytical and numerical
methods. The analytical framework used in our considerations below is well known (see
Arnold (1985), Giorgilli (1999) and Haller (1999) for general references). In particular, the
question of the optimal exponents in Nekhoroshev-type estimates near elliptic equilibria has
been investigated by Lochak (1992), Fassò et al (1998) and Niederman (1998). On the other
hand, numerical results connected to our study are only sporadic in the literature (Servizi et al
1983, Kaluza and Robnik 1992, Morbidelli and Giorgilli 1997).

In our previous paper (Contopoulos et al (2003), hereafter paper I), we studied numerically
the asymptotic properties of formal series representing approximate first integrals of motion
in the neighbourhood of an elliptic equilibrium in 2 DOF Hamiltonian systems of the form

H ≡ 1
2

(
ẋ2 + ẏ2 + ω2

1x
2 + ω2

2y
2
)

+ H3(x, y) (1)

for various models of the coupling term H3(x, y). We considered only resonance cases, i.e.
ω1/ω2 = rational. In particular, we considered the lowest possible resonance 1 : 1 as well as
a higher order resonance 4 : 3. The main focus was to define numerically the optimal order of
truncation Nopt of the formal series as a function of the distance ρ from the elliptic equilibrium.
The optimal order is defined as the order at which the time variations �I of the approximate
integral I, defined by truncating the formal series at order N = Nopt, are minimal.

In the present paper, we develop a framework to understand the behaviour of the function
Nopt(ρ) from an analytical point of view. But before that, we study the problem further from the
numerical point of view, by considering various non-resonant cases in which the frequencies
satisfy a diophantine condition. As shown in the following sections, the main ingredients
of the problem under study have indeed been found already in the non-resonant case.

Our findings for the non-resonant case represent a shift from the traditional picture for
the accumulation of small divisors in the terms produced by successive iterations of the



Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation 10833

formal procedure. A correct description of the accumulation of small divisors is given more
easily in terms of the normal form construction with Lie series. The latter will be our main
tool for analytic considerations. From the numerical point of view, however, the analysis
is facilitated by the use of a direct method of construction of the formal integrals due to
Whittaker (1916, 1937), Cherry 1924) and Contopoulos (1960). We use this method in our
numerical analysis and explain also how the results found with normal forms translate to the
results found with formal integrals by the direct method.

An essential point considered in the present paper is the dependence of the function
Nopt(ρ) on the number theoretical properties of the ratio ω1/ω2. We emphasize that the
diophantine conditions used in almost all forms of canonical perturbation theory provide
optimal estimates of the smallness of the divisors appearing in a formal series only at some
particular orders. We recall that a diophantine condition for the frequencies is a relation of
the form

|m · ω| = |m1ω1 + m2ω2 + · · · + mnωn| � γ

|m|τ (2)

where γ is a positive constant, mi are integers, |m| = ∑n
i=1 |mi |, and τ � n − 1, where n

is the number of degrees of freedom. We state that (2) provides an optimal estimate of the
smallness of the divisors at order |m| if there are mi with |m| = ∑n

i=1 |mi | such that for these
particular mi relation (2) is an equality. The corresponding divisor |m · ω| will be called a
‘diophantine divisor’. In the 2 DOF case, the diophantine condition (2) is optimal only at some
specific orders defined by the simple continued fraction representation of the ratio ω1/ω2. For
all other orders relation (2) is a strict inequality. This is a crucial remark; its consequences are
examined in detail below.

The paper is organized as follows. Section 2 presents the numerical results for the function
Nopt(ρ) in the non-resonance case. Three cases are considered, which correspond to different
degrees of ‘nobleness’ of the number ω1/ω2. Section 3 summarizes first the old analytical
framework in terms of both the direct and normal form methods. Then it presents the new
framework that leads to a theoretical prediction of the function Nopt(ρ) that agrees with the
function found numerically in section 2. Section 4 discusses the resonance case from a
theoretical framework that allows us to interpret the results found numerically in our previous
paper. Finally, section 5 contains the main conclusions of the present study.

2. Numerical determination of Nopt(ρ)

Following a trivial normalization, we consider the Hamiltonian

H ≡ ω1

2

(
x2 + p2

x

)
+

ω2

2

(
y2 + p2

y

)
+ 0.1(x3 + x2y + xy2 + y3) (3)

for various non-resonant values of the real frequencies ω1, ω2 satisfying a diophantine
condition of the form (2). It should be stressed that an analytic Hamiltonian perturbation
is given, in general, as an expansion to all orders H3 + H4 + · · ·. Thus, the Hamiltonian (3) is
special in the sense that it contains only an H3 term. Nevertheless, as will be shown below,
this simple model suffices to show the mechanisms of accumulation of small divisors in the
formal series. In fact, as demonstrated by Morbidelli and Giorgilli (1997), higher order terms
with an amplitude small enough to preserve the analyticity of the Hamiltonian are born at
successive steps of the normalization process even if such terms are not present in the original
Hamiltonian.
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Figure 1. The minimum divisor amin that can appear in a formal series at order s as a function of
s for the frequencies ω1 = 1, ω2 = (

√
5 − 1)/2 (golden mean).

2.1. ω2/ω1 = golden mean

We consider first the frequency ratio ω2/ω1 = (
√

5 − 1)/2 = 0.618 . . . by letting the
frequencies to be ω1 = 1 and ω2 = (

√
5 − 1)/2. One finds that (figure 1)

as � 0.713

|s| (4)

where

as = min |m · ω| (5)

for all m ≡ (m1,m2) with s � |m| = |m1| + |m2|, |m| having the same parity as s. According
to standard theory, the divisors |m · ω| with the above restrictions are the only ones that may
appear in the formal construction at order s.

The solid line in figure 1 represents the optimal relation as = γ /sτ . As expected from
the theory of continued fractions, the diophantine condition (2) is an equality only at those
orders s = |m1| + |m2| where there are m1,m2 for which m1/m2 = −qn/pn, the nth rational
truncation of the continued fraction representation ω2 = [1, 1, 1, . . .].

A second formal integral � can be found by solving recursively the equations

Dω�s = −{�s−1,H3}, Dω· = {·,H2} (6)

where H2,H3 are the terms of second and third degree of the Hamiltonian respectively. We
start with �2 = 1

2

(
p2

x + x2
)
. Then, equation (6) can be solved order by order and it ensures

that the quantity � = �2 + �3 + · · · has zero Poisson bracket with the Hamiltonian, i.e. it is a
formal integral of motion.

This ‘direct’ method of calculating the integrals step by step via equation (6) (Whittaker
1916, 1937, Cherry 1924, Contopoulos 1960) is as old as the Birkhoff–Gustavson method
(Birkhoff 1927, Gustavson 1966) of determining the formal integrals via normal forms. Its
extension to deal with resonance cases was given by Contopoulos (1963). In our previous
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paper, we implemented the normal form method via a variant of Lie series (Giorgilli
1979); however, this method introduces a technical complication: it gives integrals as linear
combinations of powers of the actions and this affects the convergence properties even in the
case of integrable systems (paper I). This can be understood with the help of the following
elementary example. Consider the one-dimensional Hamiltonian

H ≡ 1
2 (p2 + x2) + x3. (7)

In this case, we expect to find one formal integral equal to the Hamiltonian, i.e. the only
existing integral. However, if we calculate the formal integral with the Birkhoff normal form
(e.g. with Giorgilli’s (1979) program), we find that

I = 1
2 (p2 + x2) + x3 + 15

16 (x4 + p4 + 2x2p2) + 15
4 (x5 + x3p2) + · · · (8)

i.e. an infinite series in the canonical variables. This is due to the fact that the normal form,
i.e. the Hamiltonian, as a function of the action I reads

H = I − 15

4
I 2 − 705

16
I 3 + · · · (9)

i.e. it is a series in the action variable. The series (8) comes from the inversion of the series
(9), namely

I = H +
15

4
H 2 +

1155

16
H 3 + · · · (10)

which gives us only a finite radius of convergence along any direction in phase space. For
example, if we calculate the radius of convergence of the series I with a d’Alembert or a
Cauchy criterion along the particular direction p = 0, we find Rc = 0.186. This kind of
problem is well known (e.g. Eckhardt (1986), Wood and Ali (1987)).

On the other hand, if we calculate a formal integral with the direct method in the case of
the Hamiltonian (7), starting with �2 = 1

2 (x2 +p2) we find �3 = x3 and �s = 0 for s > 3, i.e.
we recover the Hamiltonian integral without any higher order terms. It is possible to recover
the same integral � using the normal form method, by taking appropriate power series of the
integrals found by the normal form, but the algorithm to calculate the higher order terms is
complicated.

The optimal order of truncation of the formal integral can be defined numerically by the
method used in paper I. Namely, we consider the time variations |�IN | of the approximate
integral IN corresponding to the Nth order of truncation

IN = �2 + �3 + · · · + �N (11)

calculated numerically for a sufficient time of integration and for different initial conditions
along a particular direction of phase space (see paper I for details). Then we find the order at
which the variation �IN is minimum. In the calculations throughout the present paper, � is
expressed as a polynomial series in the complex canonical variables (qi, pi), i = 1, 2, with

qi = Xi − iPi√
2

, pi = Pi − iXi

2
(12)

with X1 ≡ x,X2 ≡ y, P1 ≡ px, P2 ≡ py . The solution of the recursion relation (6) in the
variables (qi, pi) reduces to the solution of a simple diagonal linear system of equations for
the unknown coefficient of each term of �s . This is because any monomial q

k1
1 p

l1
1 q

k2
2 p

l2
2 is an

eigenfunction of the linear operator Dω, appearing in the lhs of equation (6). Namely, we have

Dωq
k1
1 p

l1
1 q

k2
2 p

l2
2 = i((k1 − l1)ω1 + (k2 − l2)ω2)q

k1
1 p

l1
1 q

k2
2 p

l2
2 (13)

or, in compact notation, Dωqkpl = i[(k − l) · ω]qkpl .
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(a) (b)

Figure 2. (a) The variations �I of the numerical value of the formal integral IN truncated at
order N, as a function of N, for three orbits with different initial distances ρ from the elliptic
equilibrium. The Hamiltonian is given by equation (3) and the frequencies are ω1 = 1, ω2 =
(
√

5 − 1)/2. (b) The optimal order of truncation Nopt, corresponding to the minima of the curves
of figure 3(a), as a function of the initial distance ρ.

In the cases considered below we calculate the formal integral up to order 120.
Figure 2(a) shows the variations |�IN | as functions of the order of truncation N for

different initial distances ρ along the direction x = y and px = py = 0. For all initial
conditions, the variations |�IN | initially decrease, indicating an apparent convergence of
the formal integral. For initial conditions close to the origin (ρ = 0.24 in figure 2(a))
the variations for successive orders of truncation decrease down to the computer precision
(10−14) so that IN for the optimal N becomes almost a perfect integral. As ρ increases the
variations become larger in general. However, near the minimum they are still relatively small
(e.g. 10−6 for ρ = 0.37). Thus IN still represents an approximate integral. Only at large
distances ρ, where chaos prevails, the variations |�IN | become large (of order unity). Then
the formal series no longer represents even an approximate integral.

The optimal order Nopt for given initial distance ρ is defined by the minimum of the curve
|�IN |(N). If we find Nopt for various distances ρ we define numerically the dependence
of Nopt on ρ. This is shown in figure 2(b), on a logarithmic scale. The function Nopt(ρ) is
characterized by approximate plateaux (roughly at orders 5, 15 and 50) which are connected
by abrupt steps. Around ρ = 0.1 the optimal order changes again abruptly, but the new
optimal order cannot be defined with accuracy because the corresponding variations �I

are smaller than the computer precision. If we plot a power law fitting (a straight line in
figure 2(b)) for the curve Nopt, we find an average power law

Nopt = 3.8ρ−1.5 (14)

for 0.1 � ρ � 0.6.
An independent test of the dependence of the optimal order on the distance ρ can be done

by calculating the norm of the remainder function of the series �. The time derivative İ N at
any truncation N differs from zero by

İ N = [�N,H3] ≡ RN+1 (15)
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(a) (b)

Figure 3. (a) The norm of the remainder RN (equations (16) and (19)) as a function of the order N,
for different distances ρ from the elliptic equilibrium, for the same Hamiltonian and frequencies
as in figure 2. (b) The optimal order of truncation Nopt as a function ρ by the remainder criterion,
i.e. by calculating the minima of the curves of figure 3(a).

and it will be referred to as the (N + 1)-order remainder. We then calculate an appropriate
norm of the remainder at distance ρ. Let

RN =
∑

k+l=N

Rklq
kpl (16)

be a Nth degree polynomial, k ≡ (k1, k2), l ≡ (l1, l2), k + l = k1 + k2 + l1 + l2 and Rkl are the
constant polynomial coefficients. We define the polynomial norm as

‖RN‖ =
∑

k+l=N

|Rkl| (17)

and the norm at distance ρ as

‖RN‖ρ = ρN
∑

k+l=N

|Rkl|. (18)

Figure 3(a) shows the norm ‖RN‖ρ ′ as a function of the order N at various distances ρ ′. The
curves in this figure are qualitatively very similar to the curves of figure 2(a). The minimum of
each of the curves of figure 3(a) defines an optimal order of truncation Nopt which minimizes
the norm ‖RN‖ρ ′ . Due to equation (15) this is the order at which the time variations of the
approximate integral IN are expected to be minimal.

If we plot Nopt defined by the minimum of the norm ‖RN‖ρ ′ versus ρ ′ we obtain the curve
of figure 3(b). This compares very well (except for a constant logarithm, log ρ∗) with the
corresponding curve of figure 2(b). There are three plateaux at roughly the same orders as
in figure 2(b). There is one more plateau at N � 100 which does not appear in figure 2(b)
because, as explained above, for this plateau, the numerical variations �I along the orbits
integrated numerically are smaller than the computer accuracy so that the plateau cannot be
defined numerically with precision. A best fit power law to the curve of figure 3(b) is

Nopt = 4.4ρ ′−1.3. (19)

The power laws found numerically (equation (14)) and by the remainder criterion
(equation (19)) turn out to have not very different exponents, taking into account that they are
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(a) (b)

Figure 4. (a) Same as in figure 1, for the frequencies ω1 = 1, ω2 = 121/4 − 1. Newborn small
divisors appear at orders r = 2, 13, 54 and 67. (b) Same as in figure 3(b), for the frequencies
ω1 = 1, ω2 = 121/4 − 1.

evaluated with quite few data. Also, the plateaux found in both cases correspond to about
the same values of N. We conclude that the variations of the norm of the remainder ‖RN‖ρ ′

provide a good estimate of the dependence of the numerical variations |�IN | on the distance
ρ from the origin.

2.2. ω2/ω1 = 121/4 − 1

The purpose of the second choice of rotation number ω2/ω1 = 121/4 − 1 is to study the
isolated phenomena introduced in the series when just one new diophantine divisor is
introduced. The continued fraction of ω2/ω1 is 121/4 − 1 = [1, 6, 4, 1, 7, . . .]. The
corresponding rational truncations are 1/1, 6/7, 25/29, 31/36, 242/281, . . . . Thus new
diophantine divisors are introduced at orders 2, 13, 54, 67, 523, being a2 = 0.138 79 . . . ,

a13 = 0.028 468 . . . , a54 = 0.024 918 . . . , a67 = 0.003 549 . . . , a523 = 0.000 069 . . .

respectively. As shown in figure 4(a), the divisor a13 is the minimum divisor that appears in
the formal series (at every second order) for 41 = 54 − 13 order steps. The divisor a54 is
not so important because its value is close to the value of the divisor a13. The next important
divisor is a67, which is the minimum divisor from order 67 up to 120, which is our last order
of calculation of the formal integral. Thus there are two leading divisors, namely a13 and a67

and the interval of steps between them is long enough so that the phenomena introduced by
each of these divisors are well isolated.

If we calculate the optimal order of truncation Nopt as a function of the distance ρ from
the origin, with the remainder criterion, we find the curve shown in figure 4(b). This curve
has two plateaux at roughly the orders 91 and 23. The transition from one plateau to the other
is abrupt. In this case drawing an average power law has no meaning.

Similar plateaux were found in figure 13 of paper I, in the resonant case ω1/ω2 = 4/3.
On the other hand, the function Nopt(ρ) appeared to be rather smooth in the case of the
1 : 1 resonance (figure 10 of paper 1, for the same Hamiltonian with ω1 = ω2 = 1). These
differences are explained in section 4 below.
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3. Accumulation of small divisors

The purpose of this section is to demonstrate the way by which small divisors accumulate
in the terms of the series as well as to estimate the overall growth of the size of the terms of
the series due to the accumulation of divisors. We consider first the non-resonant case. The
resonant case will be considered in section 4.

3.1. Summary of steps and results

In order to guide the reader through the rather technical details of the subsections below, we
provide a summary of steps and results which are contained in these subsections.

Subsection 3.2.1. We give the definitions of the Lie generating function and of the Lie
series method of calculation of the normal form around an elliptic equilibrium. We also define
action–angle (J, φ) variables suitable for the systems under study.

Subsection 3.2.2. We examine the way by which particular Fourier modes a(J ) exp(ik ·φ),
which appear for the first time in the generating function χr (i.e. Fourier terms of order r with
amplitude of order r/2 in the actions), propagate in the subsequent terms of the generating
function χr+2, χr+4, etc. The term ‘propagate’ means that each Fourier term of the form
a(J ) exp(ik · φ), appearing in χr , produces a number of new terms in the generating function
at subsequent orders, which correspond to the same or a different Fourier mode. By using a
well-known schematic representation of the propagation algorithm for Lie series, known as
the Lie triangle, we reach the following result:

Each Fourier term a(J ) exp(ik · φ), appearing in the generating function χr produces
terms of Fourier modes a′(J ) exp(ik′ · φ) in the generating function at subsequent orders
according to the following rules:

(a) Only terms of the same Fourier mode, i.e. k′ = k are produced in the generating function
up to order 2r .

(b) Beyond order 2r , terms of both the same and of different Fourier modes are produced in
the generating function.

The sequences of terms of the same Fourier mode generated at every second order are called
repetitions. We demonstrate that the growth of the size of terms of a repeated Fourier mode
a(J ) exp(ik · φ) is geometrical, with a fixed ratio.

Subsection 3.2.3. We specify the terms (Fourier modes) which produce the dominant
contribution to the overall size of the generating function χr . We conclude that the growth
of the overall size of χr is ‘piecewise geometrical’, i.e., it appears to be geometrical for
several orders, with a fixed ratio. However, this ratio increases abruptly at some specific
orders corresponding to the appearance of new small divisors, i.e., the radius of convergence
decreases by abrupt steps and it goes to zero as r → ∞. Numerical examples of this behaviour
are given (figure 5).

Subsection 3.3.1. We sketch some old estimates (Giorgilli 1988) about the growth of the
series terms in formal integrals calculated by the ‘direct’ method.

Subsection 3.3.2. We explain how repetitions appear in the direct method, by defining
paths of successive divisors which appear in the terms at successive orders. Thus we recover
essentially the growth factor for terms in repetition paths given by equation (38).

Subsection 3.3.3. We examine the growth of terms in non-repetition paths and demonstrate
that it cannot be faster than the growth of terms in repetition paths.

Subsection 3.3.4. We analyse the phenomenon of ‘delays’, i.e., the difference between
the order at which new Fourier modes appear, and the order at which these Fourier modes
become dominant in the series.
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(a)

(b)

Figure 5. The ratio λr as given by equation (38), for r even and odd. (a) ω1 = 1, ω2 = (
√

5−1)/2;
(b) ω1 = 1, ω2 = 121/4 − 1.

Subsection 3.4. Numerical examples are given which demonstrate the phenomena
described in the previous subsections.

3.2. Accumulation of small divisors by the normal form

3.2.1. Definitions. We will use the Lie method of calculation of the normal form (Hori
1966, Deprit 1969). We recall that the Lie method introduces canonical transformations as
mappings q, p → q ′, p′ induced by the Hamiltonian flow for t = 1 of a generating function
χ . Namely, any function F(q, p) of the old canonical variables (including q, p themselves)
is transformed to a function F(q ′, p′) of the new canonical variables according to

F(q ′, p′) = exp(Lχ)F (q, p) (20)

where Lχ is the Poisson bracket operator of the function χ . After r successive canonical
transformations with generating functions χ3, χ4, . . . , χr , where χs is of order s in the
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canonical variables, the transformed Hamiltonian (denoted H(r)) is brought to normal form
up to order r, namely

H(r) ≡ exp
(
Lχr

)
exp

(
Lχr−1

) · · · exp
(
Lχ3

)
H = Z2 + Z3 + Z4 + · · · Zr + h

(r)
r+1 + · · · . (21)

Note that with the notation above, H(2) corresponds to the original Hamiltonian, i.e., as if we
acted on the original Hamiltonian with an identity transformation.

In the non-resonant case the functions Zr (of order r) depend only on the quantities
qipi, i = 1, 2, so that Zr is zero for r odd.

The equation defining the normal form Zr is

Zr = 〈
h(r−1)

r

〉
(22)

where
〈
h(r−1)

r

〉
denotes all terms of h(r−1)

r which belong to the kernel of the operator Dω. On
the other hand, the generating function χr is determined by

Dωχr − h(r−1)
r + Zr = 0 (23)

so that it contains all the terms of h(r−1)
r belonging to the range of the operator Dω, plus

any arbitrary linear combination of terms of order r belonging to the kernel of the operator
Dω (usually we set the coefficients of all such terms equal to zero). This method is well
known in the literature (see Boccaletti and Pucacco (1999), chapter 8, for an instructive
introduction).

We will consider furthermore the formal construction in action–angle variables (Ji, φi)

defined by qi = √
Ji exp(iφi), ipi = √

Ji exp(−iφi). A polynomial term q
k1
1 p

l1
1 q

k2
2 p

l2
2 is

written as

q
k1
1 p

l1
1 q

k2
2 p

l2
2 = il1+l2J

k1+l1
2

1 J
k2+l2

2
2 exp[i(k1 − l1)φ1 + i(k2 − l2)φ2] (24)

where r = k1 + l1 + k2 + l2. The kernel of the operator Dω coincides thus with the functions
which are independent of the angles, while the generating function χ will contain only
fluctuating, i.e., angle-dependent terms. Note that a polynomial term of order r corresponds
to a term of order r/2 in the actions and to a Fourier mode of order |k − l| ≡ |k1 − l1| +
|k2 − l2| which is smaller than or equal to r, and of the same parity as r. This is relevant
when we solve the equations (6), or (23), because the inverse operator D−1

ω introduces divisors
ar = (k − l) · ω,

D−1
ω

[
J

r
2 ei(k−l)·φ] = −i

(k − l) · ω
J

r
2 ei(k−l)·φ. (25)

The order |k − l| of a Fourier mode exp(i(k − l) · φ) will also be referred to as the order of
the associated divisor ar = |(k − l) · ω|. Thus the divisors appearing in equation (25) are of
order less than or equal to r, and of the same parity as r. This means that a divisor which
appeared for the first time at order r0 may appear an infinite number of times in some terms of
the formal series at all orders r > r0 with the same parity as r0.

3.2.2. Propagation of Fourier modes and accumulation of small divisors in the generating
function. An implementation of the recursion scheme introduced by equations (22) and (23)
reveals how small divisors accumulate in the generating function (and in the normal form).
Assume that the normal form has been determined up to order r − 1; thus we can determine
the generating function χr . The recursion in the subsequent step is given by the Lie triangle
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Z2

0 Z3

0 0 Z4

...
...

...
. . .

0 0 0 . . . Zr−1

Lχr
Z2 0 0 . . . · h(r−1)

r

· Lχr
Z3 0 . . . · · h

(r−1)
r+1

· · Lχr
Z4 · · · · h

(r−1)
r+2

...
...

...
. . .

...
...

...
...

. . .

. . . . . . . . . . . . Lχr
Zr+1 · · · . . . h

(r−1)
2r−1

1
2L2

χr
Z2 . . . . . . . . . . . . Lχr

hr+2 . . . . . . . . . . . . h
(r−1)
2r

· 1
2L2

χr
Z1 . . . . . . . . . . . . Lχr

hr+3 . . . . . . . . . . . . h
(r−1)
2r+1

...
...

. . .
...

...
...

...
. . .

...
...

...
...

The upper diagonal contains the full Hamiltonian after r −1 transformations. The exponential
operator exp

(
Lχr

)
acts by columns, thus allowing us to calculate the whole triangle. The

sum of the terms in the sth line of the triangle gives h(r)
s . In particular, the rth line gives the

equation Zr = Lχr
Z2 + h(r−1)

r , by which χr is defined.
Since in the non-resonant case the normal form does not contain odd terms, we have

Z3 = 0 and Z4 
= 0 (in general). Thus we have h
(r)
r+1 = h

(r−1)
r+1 and h

(r)
r+2 = h

(r−2)
r+2 + Lχr

Z4. In
a similar way we find that χr affects only the terms of the Hamiltonian which have the same
parity as r. Note also that any Fourier mode of χr remains unaltered by the operation Lχr

Z4,
because Z4 contains only terms independent of the angles; this is the crucial remark in order
to grasp how the small divisors accumulate.

Now, the generating function χr+2 is determined by

Dωχr+2 − h
(r+1)
r+2 + Zr+2 = 0 (26)

and since h
(r+1)
r+2 = h

(r)
r+2 we obtain

Dωχr+2 − h
(r)
r+2 + Zr+2 = 0 (27)

or

χr+2 = D−1
ω

(
h̃

(r)
r+2

)
(28)

where h̃
(r)
r+2 = h

(r)
r+2 − Zr+2 denotes the fluctuating part of h

(r)
r+2. But h̃

(r)
r+2 = h̃

(r−2)
r+2 + Lχr

Z4.
Therefore we get

χr+2 = D−1
ω

(
h̃

(r−2)
r+2 + Lχr

Z4
)
. (29)

The last equation clearly shows that all the Fourier modes of χr propagate unaltered into
χr+2, while new Fourier modes (of order r + 2) are introduced only by the Hamiltonian at
order r + 2.

In the same way, studying the interaction of χr with any term of the normal form Zs ,
where s � r − 1, by means of the Lie triangle, we find that the Fourier modes of χr propagate
according to the scheme

χr → Lχr
Zs → χr+s−2 → Lχr+s−2Zs → χr+2s−4 → Lχr+2s−4Zs → · · · . (30)

In particular, by combining the equations above in the form

Lχr
Zs = {

D−1
ω h̃(r−2)

r , Zs

}
(31)
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and setting s = 4, we find

χr+4 = D−1
ω h̃

(r)
r+4 + D−1

ω

{
D−1

ω h̃
(r−2)
r+2 , Z4

}
+ D−1

ω

{
D−1

ω

{
D−1

ω h̃(r−4)
r , Z4

}
, Z4

}
+ · · · . (32)

Thus, if we denote by Fr the sum of Fourier modes of order r, we have from equation (32)

χr+4 ∼ 1

ar+4
Fr+4 +

O(r + 2)

a2
r+2

Fr+2 +
O2(r)

a3
r

Fr + · · · (33)

where ar denotes the smallest divisor of order r as defined by (5). The last equation clearly
shows that the Fourier modes Fr+4, Fr+2, Fr , . . . , grow independently. Each of them grows
geometrically with a ratio

λr = O(r)

ar

. (34)

The numerator of equation (34) is a quantity of order O(r). The factor λr can be defined
more precisely in the following way. Let J

m1/2
1 J

m2/2
2 be any term of Z4, i.e. m1 + m2 = 4. Let

also J
s1/2
1 J

s2/2
2 eik1φ1+ik2φ2 be any term of χr, s1 + s2 = r, |k1| + |k2| � r and of the same parity

as r. Then the Poisson bracket for these two particular terms gives{
J

s1/2
1 J

s2/2
2 eik1φ1+ik2φ2 , J

m1/2
1 J

m2/2
2

}

= i

2

(
k1m1J

s1+m1−2
2

1 J
s2+m2

2
2 + k2m2J

s1+m1
2

1 J
s2+m2−2

2
2

)
eik1φ1+ik2φ2 . (35)

Thus we have, in compact notation,
∥∥D−1

ω

{
J

s
2 eik·φ, J

m
2
}∥∥ � |k‖m|

2|k · ω| � 2|k|
|k · ω| (36)

where |k| =
√

k2
1 + k2

2. In view of equation (29), it follows that the term J
s1/2
1 J

s2/2
2 eik1φ1+ik2φ2

propagates in the generating function χr+2 with a size larger with respect to its size in χr by a
ratio

λk = 2|k|A
|k · ω| (37)

where A is the supremum norm of Z4.

3.2.3. Dominant Fourier modes and growth of the size of the generating function. If we set

λr = max

{
2|k|A
|k · ω| , |k1| + |k2| � r, where (|k1| + |k2|) mod 2 = r mod 2

}
(38)

then, in view of equation (32), we have

‖χr‖ ∼
∑

κ=0,2,...,r−6

∥∥D−1
ω

(
D−1

ω LZ4

)κ/2
h̃

(r−κ−4)
r−κ

∥∥. (39)

But, due to equation (36), there is no term in
(
D−1

ω LZ4

)ν
h̃(r−4)

r that can grow faster than (λr)
ν .

Thus, after ν repetitions, the size of the Fr terms
(
D−1

ω LZ4

)ν
h̃(r−4)

r in χr+2ν is bounded by

‖Fr,r+2ν‖ � (λr)
ν‖Fr,r‖ � (λr)

ν
∥∥D−1

ω h̃(r−4)
r

∥∥ (40)

where Fi,j denotes the Fi terms of χj .
Thus the overall picture of the growth of the size of the generating function is the

following. In the generating function up to order r there are terms corresponding to Fourier
modes r, r − 2, r − 4, . . . . In the next iterations, χr+2, χr+4, . . . , the size of each of these
modes grows independently with a geometrical factor λr , λr−2, λr−4, . . . , respectively. The
overall size of χr is determined by the size of the largest growing Fourier mode. The initial



10844 C Efthymiopoulos et al

size of the Fourier modes of order r is equal to their size in h̃(r−4)
r . As r increases, new

factors λ, larger than the previous factors, are expected to appear at those specific orders
where new diophantine divisors appear. These orders are specified by the continuous fraction
expansion of the frequency ratio, as explained in sections 2.1 and 2.2. When a new diophantine
divisor appears at some order, its corresponding Fourier mode grows with a factor larger than
the factor of the previous modes. These consecutive appearances of new factors by abrupt
steps produce a growth of the size of the series that looks piecewise geometrical. Namely, this
is a growth with an apparently constant factor for many orders, which gives the impression
that there is a constant, non-zero, radius of convergence. However, at some subsequent order
the factor increases abruptly and the radius of convergence decreases abruptly. This picture
is similar to that found by Servizi et al (1983) in the case of two-dimensional symplectic
mappings of the plane.

If a3 denotes the smallest divisor of order 3, then A ∼ ‖Z4‖ � ‖H3‖2/a3. Thus,
for a given Hamiltonian H3, equation (38) implies that λr depends essentially only on the
number theoretical properties of the frequencies ω ≡ (ω1, ω2). In particular, the maximum of
|k|/|k · ω| is expected to occur for the minimum divisor |k · ω| because, for this divisor, |k|
is still relatively large and it is divided by a small number. On the other hand, away from the
minimum divisor, both |k| and |k · ω| are large and their ratio, as |k| → ∞, tends to a constant
�1/|ω|. At any rate, λr can be found immediately once ω is given. Figure 5(a) shows the
factor λr as a function of r for the case ω2/ω1 = (

√
5 − 1)/2, for r even (left panel) and for

r odd (right panel). Figure 5(b) shows the same function for the case ω2/ω1 = 121/4 − 1.
In both cases, the function λr increases by abrupt steps. A comparison of figure 5(a) with
figure 1 shows that the steps occur at the orders r where the value of the minimum divisor
ar = |k · ω| changes abruptly. Some secondary steps may also appear at orders corresponding
to the appearance of low-order multiples of a diophantine divisor. The same is true in the
case of figure 5(b), as seen from a comparison with figure 4(a).

In figure 5(a) the plateaux appear in quite regular intervals on a logarithmic scale so that
an average power law fit can be found. This is shown as a straight line in figure 5(a). The best
fit power law is

λr � 0.036r1.67 r even, λr � 0.020r2.03 r odd. (41)

The power exponent found for odd orders is about equal to 1 + τ = 2 (τ = 1 in this case),
while the exponent found for even orders differs from 1 + τ by about 0.3. We expect to
obtain approximately the value 1 + τ of the exponent because each new divisor k · ω is O(rτ ),
while the numerator |k| of λr given by equation (38) is also O(r). However, it should be
emphasized that this average power law applies only because the successive steps are at quite
regular intervals, a fact due to the nature of the golden mean number. On the other hand, in
the case of the less noble number 121/4 − 1 (figure 5(b)) the steps and subsequent plateaux
appear at irregular intervals of values of r, and one must go to orders much higher than 120 in
order to obtain a good number of plateaux that allow us to draw a meaningful power law.

3.3. Accumulation of small divisors in the direct method

3.3.1. Old estimates. An approximate treatment of the problem of the accumulation of small
divisors in the direct method is made in Giorgilli (1988). A law of the form

‖Rr‖ ∼ ‖�r‖ ∼ r!1+τ (42)

was found. We summarize first the main steps that lead to an estimate of the form (42).



Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation 10845

Consider the recursion relation

Dω�r+1 = −[�r,H3]. (43)

Any term of �r is written as

J
s1/2
1 J

s2/2
2 exp(i(k1φ1 + k2φ2)) (44)

with s1 + s2 = r, |k1| + |k2| � r and |k1| + |k2| is of the same parity as r. Similarly, any term
of H3 is written as

J
m1/2
1 J

m2/2
2 exp(i(n1φ1 + n2φ2))

with m1 + m2 = 3, |n1| + |n2| = 1 or 3. The Poisson bracket of the two terms gives
i

2

[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]
× exp(i(k1 + n1)φ1 + i(n2 + k2)φ2).

So the new term in the integral reads
i

2
D−1

ω

{[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]

× exp(i(k1 + n1)φ1 + i(n2 + k2)φ2)
}

=
1
2

[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]
(k1 + n1)ω1 + (k2 + n2)ω2

× exp(i(k1 + n1)φ1 + i(n2 + k2)φ2). (45)

The norm of the numerator in equation (45) is O(r) because of the s1n1 and s2n2 terms,
where s1 + s2 = r . On the other hand, the smallest denominator (k + n) · ω is given by the
diophantine condition (k + n) · ω ∼ ar+1 = O(1/(r + 1)τ ). Therefore

‖�r+1‖ ∼ O(r + 1)

ar+1
‖�r‖ ∼ O((r + 1)τ+1)‖�r‖. (46)

Going backwards, after r − 2 iterations we find

‖�r+1‖ ∼ O(r + 1)O(r) · · ·O(3)

ar+1ar · · · a3
∼ O((r + 1)!τ+1). (47)

3.3.2. Divisor paths and repetitions in the direct method. By the above analysis, there
appears to be an accumulation of divisors in the terms of a formal integral series in the form
of products ar+1ar · · · a3. However, this is a simplification. We show now that there cannot be
any term in �r+1 which contains a product of divisors of the form ar+1ar · · · a3. This is due to
the following remark. The term (44) appearing in the above construction is itself produced by
the recursion relation (43) in the previous step, namely

Dω�r = −[�r−1,H3]. (48)

Therefore this term is produced by dividing a Fourier term exp(ik · φ) in [�r−1,H3] by k · ω.
Similarly, the term exp(i(k + n) · φ) appearing in equation (45) is divided by k′ · ω = k · ω +
n · ω, where n ≡ (n1, n2) is some fixed integer vector corresponding to a particular Fourier
mode in H3 (in its most general form, H3 contains all terms with |n1| + |n2| = 1 or 3).
Therefore, the two successive divisors appearing in the term exp(i(n + k) · φ) of �r+1 are
linked by

k′ · ω = k · ω + Aj (49)
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where Aj = nj · ω, j = 1, . . . ,M corresponds to any of the M different Fourier modes
exp(inj · φ) that appear in H3.

Let now A = min{|Aj |}. If k · ω is diophantine then we have |k · ω| � A. But then,
equation (49) implies that |k′ω| = O(A), i.e. k′ · ω cannot be diophantine. Similarly, if k′ · ω

is diophantine, |k · ω| = O(A), i.e. k · ω is not diophantine. Thus, two successive divisors in
the sequence a3, a4, . . . , ar+1 cannot both be diophantine.

On the other hand, if for some j0 � 3 the divisor aj0 = k · ω is diophantine, then there
are terms in �r+1 such that every second divisor aj0+2, aj0+4, . . . in the sequence aj for these
particular terms, for j > j0, is equal to aj0. To see this, we note that equation (49) implies
that the paths of successive divisors

k · ω → k′ · ω → k′′ · ω → · · ·
can be arranged in a tree graph starting with a single node (aj0 = k · ω) with M branches.
As the recursion relation (43) is iterated, in the second step the endpoint of each branch
is a starting node for M new branches. In particular, if we take the Poisson bracket of the
initial term exp(ik · ω) of �j0 alternatively with the H3 terms exp(in · ω), exp(−in · ω),

exp(in ·ω), . . . , we create terms corresponding to Fourier modes exp(i(k +n) ·ω), exp(ik ·ω),

exp(i(k + n) ·ω), . . . , in subsequent orders of � which are divided by the sequence of divisors

k · ω → (k + n) · ω → k · ω → · · · .
Such a sequence of Fourier terms, and of their respective divisors, will be called a repetition
path.

Repetition paths are important because they introduce the same diophantine divisor
k · ω = aj0 in every second step. The growth of the size of the series terms produced
by repetition paths is piecewise geometrical. This can be seen by using the direct method
as above, but the calculation is simplified if we implement the direct method not in the
Hamiltonian H = H2 + H3, but in the Hamiltonian H(1) after just one normalization step,
namely H(1) = exp

(
Lχ3

)
H . The new Hamiltonian reads

H(1) = Z2 + h
(1)
4 + h

(1)

5 + · · · (50)

where h(1)
s is of order s/2 in the actions. The recursion relation for the direct method reads

Dω�r+2 = −[
�r, h

(1)
4

]
+ · · · . (51)

The gain from the above normalization is that one iteration of equation (51) corresponds
essentially to two iterations of equation (43), i.e. of the recursion relation before the
normalization.

Taking now again the Poisson bracket of a term of �r , written as (44) with s1 + s2 =
r, |k1| + |k2| � r and of the same parity as r, with the term

J
m1/2
1 J

m2/2
2 exp(i(n1φ1 + n2φ2))

of h
(1)
4 , with m1 + m2 = 4, |n1| + |n2| � 4, yields two terms in Rr+2 given by

i

2

[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]
× exp(i(k1 + n1)φ1 + i(k2 + n2)φ2).

The corresponding new terms in �r+2 are
i

2
D−1

ω

{[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]

× exp(i(k1 + n1)φ1 + i(n2 + k2)φ2)
}
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=
1
2

[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]
(k1 + n1)ω1 + (k2 + n2)ω2

× exp(i(k1 + n1)φ1 + i(n2 + k2)φ2). (52)

The norms of the terms in the numerator of (52) are |k1m1 − s1n1| and |k2m2 − s2n2|. If we
add and subtract n1m1 inside the first absolute value and n2m2 inside the second absolute
value, we find that the numerator is smaller than |k + n| · m + (s + m) · |n|, where m and s are
positive. Thus we find�����

1
2

[
(k1m1 − s1n1)J

(s1+m1−2)/2
1 J

(s2+m2)/2
2 + (k2m2 − s2n2)J

(s1+m1)/2
1 J

(s2+m2−2)/2
2

]
(k1 + n1)ω1 + (k2 + n2)ω2

�����
� 1

2

|k + n| · m + |s + m| · |n|
|k + n| · ω

. (53)

Repetition paths are obtained simply by observing that h
(1)
4 contains in general a part

in normal form Z4 = 〈
h

(1)
4

〉
, which corresponds to the Fourier mode n = 0. But then,

according to equation (52), the Poisson bracket [�r,Z4] creates just the repetition of the
Fourier mode exp(ik′ · ω) = exp(ik · ω) (since n = 0) iteratively in �r,�r+2,�r+4, . . . .

Furthermore, according to equation (53) the growth of the size of this Fourier mode is bounded
by 1

2

∣∣ |k|m
k·ω

∣∣ � 2|k|
|k·ω| . Therefore, we recover the same result as by the normal form method,

namely that repetition paths introduce terms corresponding to repeated Fourier modes, each
growing independently from each other with the ratio λr given by equation (38).

3.3.3. Contributions by non-repetition paths. The normal form terms n = 0 will be said
to produce repetition paths of period 1, since every successive term produced iteratively
corresponds to the same Fourier mode, i.e. this mode is repeated at every iteration.

We consider now the growth of the size of terms produced by paths corresponding to
n 
= 0 in equations (52) and (53). Let r0 be the order at which a new diophantine divisor
appears. We consider the growth, for r � r0, of terms produced either by non-repetition paths
or by repetition paths of period larger than 1. Among these terms, the fastest growing are
those corresponding to repetition paths of period 2. For these terms we have |k + n| · m +
(s + m) · |n| = O(r), because s1 + s2 = r , and |mn| � |sn| for r large. On the other hand,
a divisor ∼r−τ

0 appears in every second iteration. Thus, after ν iterations beyond r = r0,
the size of the respective terms has grown as O

(
r0(r0 + 2) · · · (r0 + 2ν)r

ντ/2
0

)
. This is to

be compared with the size of the terms produced by repetition paths of period 1, which is(
λr0

)ν = O
(
r

ν(τ+1)
0

)
. Clearly, r

ν(τ+1)
0 � r0(r0 + 2) · · · (r0 + 2ν)r

ντ/2
0 as long as

ν <
r

1+ τ
2

0 − r0

2
. (54)

In the 2 DOF case τ = 1 so that repetition paths of period 2 become of equal size to repetition
paths of period 1 after 2ν ∼ r1.5

0 iterations. But in the meantime, many more new diophantine
divisors appear, as r increases, which create terms growing much faster than the terms with
divisor ar0 appearing in repetition paths of any period. For example, in the case of the golden
mean, the diophantine divisor a34 = 13ω1 − 21ω2 appears at order r0 = 34. Thus, repetition
paths of period 2 with this particular divisor produce terms of size comparable to the size of
terms with the same divisor produced by period 1 repetitions after 2ν � 200 iterations, i.e. at
the order r = 2ν + 34 = 234. But there are 3 new diophantine divisors after a34 which appear
up to order 234, and these divisors produce terms which, at r = 234, are in any case far more
important than the terms produced by the repetition, of any period, of the F34 mode.
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We conclude that non-repetition paths, or repetition paths of period higher than 1 can be
safely ignored. Thus the direct method gives essentially the same result as the normal form
method, namely that the growth of the size of the series terms is piecewise geometrical, with
ratio λr changing abruptly at particular values of r where new diophantine divisors appear.

3.4. Delays and inversions

3.4.1. Delays. Let r0 be the order at which a new diophantine divisor ar0 = k · ω appears,
and r ′

0 > r0 be the order at which the next new diophantine divisor ar0′ = k′ω appears. We
assume r0 and r ′

0 to have the same parity. The size of the Fourier mode exp(ik · φ) grows
with a geometrical factor λr0 ∼ rτ+1

0 , while the size of the Fourier mode exp(ik′φ) grows with
a geometrical factor λr0′ ∼ r ′τ+1

0 > λr0. The recursion relation (43) implies that there are
at least (r ′

0 − r0)/3 steps needed to reach the mode exp(ik′φ), at order r ′
0, starting from the

mode exp(ik · φ), through a non-repetition path. On the other hand, it is possible to start from
the mode exp(ik · φ) and remain in the same mode up to the order r ′

0 via a repetition path.
In the latter path, the mode exp(ik ·φ) gains a factor λr0 at every second step. Therefore when
the new mode exp(ik′φ) appears, at order r ′

0, the old mode exp(ik ·φ) has a size larger than the

size of the new mode by a factor ∼λ
(r ′

0−r0)/6
r0 . From there on, the new mode grows faster than

the old mode since λr ′
0
> λr0 . Therefore, the size of the new mode will become larger than the

size of the old mode at some order r > r ′
0, i.e. the new mode becomes dominant at an order

larger than the order of its appearance. We call this phenomenon a ‘delay’. Quantitatively, the
delay is equal to the difference r − r ′

0.
The delay can be estimated as follows. Let ν be the number of double steps needed after

r ′
0 so that the mode exp(ik′φ) acquires a size equal to the size of exp(ik · φ). Then we have

(
rτ+1

0

) r′0−r0
6 +ν � (

r ′τ+1
0

)ν
(55)

which yields the estimate

2ν � (r ′
0 − r0) log r0

3 log(r ′
0/r0)

. (56)

The Fourier mode exp(ik′φ) becomes dominant shortly thereafter (for larger r). For
example, the mode exp(ik′φ) exceeds by a factor 10 the mode exp(ik · φ) at order

r � (r ′
0 − r0) log r0

3 log(r ′
0/r0)

+
2 log 10

(τ + 1) log(r ′
0/r0)

. (57)

Figure 6 displays the delay phenomenon in the case ω2/ω1 = 121/4 − 1. This figure
shows the divisor corresponding to the dominant Fourier mode as calculated with the direct
method, as a function of the order r. This figure is to be compared with figure 4(a). In this
figure we see that the divisor 6ω1 − 7ω2 appears at order 13. However, as seen in figure 6,
this divisor of figure 4(a) produces a dominant Fourier mode exp(±i(6φ1 − 7φ2)) only at
order r = 23. This is because there is a delay for this mode to prevail over the mode
exp(±i(φ1 − φ2)), which is the previous most important mode (with divisor ω1 − ω2). If we
use the estimate of equation (57) with r0 = 2, r ′

0 = 13, we find r = 17 which is not too far
from r = 23. Similarly, the Fourier mode exp(±i(31φ1 − 36φ2)) appears at the order 67, but
as figure 6 shows, this mode becomes dominant only at order 89. In this case, equation (57),
with r0 = 13, r ′

0 = 67, gives r = 97 which is not too far from r = 89. Thus, despite the
approximations used, the estimate (57) does not deviate very much from the values found
numerically.
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Figure 6. The divisor ar corresponding to the Fourier mode with the biggest size (dominant mode)
at order r, as a function of r. The mode with the divisor a2 of figure 4(a) is dominant at r = 4.
The mode with the divisor a13 of figure 4(a) becomes dominant at r = 23. Finally, the mode with
the divisor a67 of figure 4(a) becomes dominant at r = 89.

3.4.2. Inversions. Another interesting phenomenon shown in figure 6 is the phenomenon
of ‘inversion’. Namely, a Fourier mode different from both exp(±i(6φ1 − 7φ2)) and
exp(±i(31φ1 − 36φ2)) becomes dominant for the interval of values 55 � r � 88. This
phenomenon appears in the transient interval when new modes with diophantine divisors
appear, before these modes become dominant. In the above example, an inversion occurs with
the appearance of the modes exp(±i(25φ1 − 29φ2)) (at order 54), and exp(±i(31φ1 − 36φ2))

(at order 67). In particular, when several new modes appear at nearby orders, there are
transient intervals of r in which no mode is clearly dominant. In such intervals even some non-
repetition paths may produce terms with size comparable to the size of the terms produced
by repetition paths. Note that the mode exp(±i(25φ1 − 29φ2)) never becomes dominant.
This is because, as we see in figure 4(a), the order of appearance of this mode (56) is quite
close to the order of appearance of the next mode exp(±i(31φ1 − 36φ2)), and the latter
mode is much more important than the former, because it has a much smaller divisor, i.e. a
much larger λ. Therefore, the delay mechanism produces a smaller delay in the case of the
exp(±i(31φ1 −36φ2)) mode than in the case of the exp(±i(25φ1 −29φ2)) mode and the mode
exp(±i(31φ1 − 36φ2)) becomes dominant before the size of the mode exp(±i(25φ1 − 29φ2))

exceeds the size of the previously dominant mode.

3.5. Explanation of the numerical results

The phenomena described above can now be compared with numerical results. The piecewise
geometrical growth and the inversions are clearly seen if we plot the size of the various
Fourier modes exp(i(k · φ)) at particular orders versus the corresponding divisor k · ω. This
is shown in figure 7 for the case ω2/ω1 = 121/4 − 1. Figure 7(a) shows the size of all the
Fourier modes in the integral �r with divisors |ar | � 1 at order r = 14. The dominant
mode is exp(±i(φ1 − φ2)). This mode produces two nearly equal dominant modes in �15,
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(a) (b)

(c) (d )

(e) ( f )

Figure 7. The norm of the various terms of the formal integral at order r as a function of their
respective divisor for divisors smaller than as = 2. Each point corresponds to one term of the
form (44), but there are many terms corresponding to the same Fourier mode and divisor. The
Hamiltonian is (3) and the frequencies ω1 = 1, ω2 = 121/4 − 1. (a) r = 14, (b) r = 15,
(c) r = 17, (d) r = 23, (e) r = 79, ( f ) r = 89.
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(figure 7(b), for r = 15), namely exp(±i(2φ1 − 3φ2)) and exp(±i(φ1 − 2φ2)). These terms
are produced by the Poisson bracket of exp(i(φ1 − φ2)) (the dominant term of �14) with the
Hamiltonian terms exp(i(φ1 − 2φ2) and exp(−iφ2), or the Poisson bracket of the complex
conjugates exp(−i(φ1−φ2)) with exp(−i(φ1−2φ2)) and exp(iφ2) respectively, as explained in
section 3.2. Note, however, that there is another mode at r = 15, namely exp(±i(6φ1 −7φ2)),
which corresponds to a smaller divisor than the previous terms, namely |6ω1 − 7ω2|. This
is the smallest divisor which can appear at r = 15. The corresponding mode is the fastest
growing one. This is shown in figure 7(c), at order r = 17. By comparing the size of the
mode exp(±i(6φ1 − 7φ2)) at orders r = 15 and r = 17 we find a gain of size at r = 17 by a
factor λ � 8.9. Other modes grow by a smaller factor. Now, the mode exp(±i(6φ1 − 7φ2))

has appeared already at order r = 13 = 6 + 7. However, despite the fact that this mode is the
fastest growing one, it is not yet dominant at r = 17 (figure 7(c)) because other modes have
a larger size. This mode becomes dominant at r = 23, as shown in figure 7(d), while we find
that at subsequent orders it prevails over other modes by orders of magnitude.

Let Sr denote the size (norm) of the dominant mode at order r. Then at order r = 23 we
have log S23 = 2.05. The size of the same mode at r = 17 is log S17 = −0.85. Therefore
log(S23/ log S17) = 2.9. Since there are three double steps from r = 17 to r = 23, assuming
geometrical growth, we have log(S23/ log S17) = 3 log λ. Indeed we find 3 log λ = 2.85
which is very close to the value 2.9 found numerically. Thus the growth of the mode is clearly
geometrical.

Now, at order r = 67 there is a newly appearing mode, exp(±i(31φ1 − 36φ2))

which corresponds to a smaller divisor a67 = |31ω1 − 36ω2| than the divisor a13 of the
mode exp(±i(6φ1 − 7φ2)). Therefore, according to the above considerations, the mode
exp(±i(31φ1 − 36φ2)), which has initially a very small size, grows at a faster rate than any
other mode, including exp(±i(6φ1 − 7φ2)) which is dominant at that order. Indeed, we find
numerically that the mode exp(±i(31φ1 − 36φ2)) grows by a factor λ′ � 316 > 8.9 = λ.
Therefore, after some iterations the mode exp(±i(31φ1 − 36φ2)) acquires a significant size.
This is shown in figures 7(e) and ( f ) at r = 79 and r = 89. The mode exp(±i(31φ1 − 36φ2))

appears to the left of the mode exp(±i(6φ1 − 7φ2)) (since it has a smaller divisor). But still
the term exp(±i(6φ1 − 7φ2)) is larger than exp(±i(31φ1 − 36φ2)), for r = 79. However, at
r = 89 (figure 7( f )), the new mode becomes dominant in its turn. It will remain dominant
until new modes, corresponding to smaller divisors, appear at higher orders. This process is
repeated ad infinitum.

The ratio λ′/λ is equal to �35.5. This value can be compared with the theoretical
estimates given by equation (38). Namely, we have the estimate λ′/λ = (|k′|ω)/(|k|ω′).
If we set the appropriate values, namely |k| =

√
62 + 72 and |k′| =

√
312 + 362 we

find λ′/λ = 41.9. Thus the error with respect to the numerically determined value is
about 15%.

The fact that the overall growth of the series is piecewise geometrical can be clearly
seen if we plot the ratio of the remainders ‖Rr+2‖/‖Rr‖ as calculated by the direct method.
Figure 8(a) shows this ratio in the case ω2/ω1 = 121/4 − 1. We can see clearly the formation
of plateaux indicating a growth with piecewise constant ratio. The dashed lines correspond to
the orders where a particular mode becomes dominant. If we project these particular orders
on the diagram Nopt(ρ) (figure 4(b), replotted in figure 8(b)), we see that the orders where new
abrupt steps occur mark the orders where plateaux are formed in the diagram Nopt(ρ). This is
easy to understand. Since the ratio ‖Rr+2‖/‖Rr‖ is piecewise constant, there are ‘pseudoradii
of convergence’ which are also piecewise constant and equal essentially to the inverse ratio
‖Rr‖/‖Rr+2‖. Let ρi and ρi+1 be two successive pseudoradii (ρi+1 < ρi). For all ρ with
ρi+1 < ρ < ρi the optimal order of truncation is equal to about the order ri where ρi appears.
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(a) (b)

Figure 8. (a) The remainder ratio ‖R(s+2)‖/‖R(s)‖ as a function of s for the formal integral
calculated in the Hamiltonian (3) with ω1 = 1, ω2 = 121/4 − 1. The dashed lines correspond to
s = 23 and s = 89, i.e. to the orders where the divisors a13 and a67 become dominant respectively.
These orders mark the limits of each plateau in the ratio ‖R(s+2)‖/‖R(s)‖. (b) Figure 4(b) replotted.
The dashed lines correspond again to Nopt = 23 and Nopt = 89.

(a) (b)

Figure 9. (a) Same as in figure 8(a) for the Hamiltonian (3) with ω1 = 1, ω2 = (
√

5 − 1)/2
(solid line with squares). The dashed line shows the variation of λr , as a function of the order r, as
predicted theoretically (equation (38)). (b) Same as figure 8(a) for the Hamiltonian (60), for the
values ε = 0 (squares), ε = 0.15 (stars) and ε = 0.30 (circles).

But the optimal order changes abruptly for ρ < ρi+1 and it moves to ri+1. This process is
repeated ad infinitum.

Similar phenomena are observed in the case ω2/ω1 = (
√

5 − 1)/2. Figure 9(a) shows
the ratio ‖Rr+2‖/‖Rr‖, where again we see the existence of plateaux corresponding to
a piecewise constant geometrical growth. These plateaux correspond to the plateaux of
figure 5(a). The variations of λr are replotted in figure 9(a) as a dashed line going alternatively
upwards and downwards. The coincidence with the curve ‖Rr+2‖/‖Rr‖ is striking, despite the
fact that many approximations enter in the theoretical determination λr by the upper bounds
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of the relevant norms. Note also that each plateau in figure 9(a) appears with a delay with
respect to the orders where new diophantine divisors appear. If we calculate an average power
law fitting we find

‖Rr+2‖
‖Rr‖ = 0.05r1.7. (58)

The power exponent is to be compared with the exponents (equation (41)) found for λr .
As mentioned earlier, in this case where many plateaux are formed we expect theoretically
an average power law λr ∼ r1+τ . However, delays are expected to lower somewhat the
corresponding exponent for ‖Rr+2‖/‖Rr‖ versus r. Thus we set

‖Rr+2‖
‖Rr‖ ∼ r1+τ−b (59)

where b is a ‘delay’ constant. In general, b < 1 since delays are only a fraction of the order
where new diophantine divisors appear.

In figure 9(b) we plot the ratio ‖Rr+2‖/‖Rr‖ for the formal integral series calculated for
more general Hamiltonians of the form

H ≡ ω1

2

(
x2 + p2

x

)
+

ω2

2

(
y2 + p2

y

)
+ 0.1((1 + ε)x3 + (1 − ε)x2y + xy2 + αy3) (60)

where α satisfies the equation√
(1 + ε)2 + (1 − ε)2 + 1 + α2 = 2 (61)

so that the term H3, for all the Hamiltonians of the form (60), has the same size, independent
of ε < 1. For ε = 0 we find the ‘symmetric’ Hamiltonian (3) in which all the terms in H3

have equal weights. However, for ε 
= 0, the terms have unequal weights and the term H3

no longer has any symmetry with respect to the variables x and y. As seen in figure 9(b), for
three different values ε = 0, 0.15 and 0.30 the behaviour of the function ‖Rr+2‖/‖Rr‖ is quite
similar. Thus, the choice of a symmetric function H3 as in equation (3) does not influence
the results under consideration. This is due to the fact that equation (38), which determines
the growth factor λr at successive orders, does not depend on the symmetry properties of H3,
but only on the constant A which depends on the size of H3. On the other hand, it should
be stressed that one must consider perturbation terms H3 in which all the Fourier modes of
order 3 are present. Such terms correspond to the general problem. Otherwise, i.e., if some
Fourier modes are absent from H3 or if they have relatively small amplitudes with respect to
other modes, then the corresponding tree branches in the paths of successive divisors described
in section 3 are either absent or ineffective. In this case, the real phenomena regarding the
succession of dominant Fourier modes in the series are pushed to higher orders and they are
less easily detected numerically.

If we use equation (59) we can estimate now theoretically the law Nopt(ρ). By taking
recursively equation (59) we find

‖Rr‖ � Ar/2r!
1+τ−b

2 (62)

where A is the constant of proportionality in equation (59). Then the norm at distance ρ is
given by

‖Rr‖ρ � Ar/2r!
1+τ−b

2 ρr . (63)

Taking logarithms and Stirling’s formula we find

log‖Rr‖ρ � r log

(
ρ

ρ0

)
+

1 + τ − b

2
(r log r − r) (64)
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where ρ0 = A−1/2. The optimal order r = Nopt corresponds to the minimum of equation (64),
namely

Nopt =
(

ρ

ρ0

) −2
1+τ−b

. (65)

In the case ω2/ω1 = (
√

5 − 1)/2 (τ = 1, b = 0.3 i.e. the difference of 1.7 from 2) we find

Nopt =
(

ρ

ρ0

)−1.17

. (66)

This exponent is close to the exponent found numerically with the remainder criterion
(equation (19)). At any rate, we emphasize that equations (59) and (65) represent just
average power laws which have meaning only after a sufficient number of steps in the diagram
‖Rr+2‖/‖Rr‖ versus r. In most cases this happens at quite large orders, so that in the actual
estimates for Nopt one should find first the function λr and then draw the plateaux and find the
abrupt steps in Nopt as described above.

4. Resonance case

We now turn our attention to the resonance cases considered numerically in our previous
paper. We have a resonance whenever ω1 : ω2 = n : m, with n,m integer. The normal form
contains kernel terms of the operator Dω. In the resonance case, these are not only terms
independent on the angles, but also terms of the form

J
s1
2

1 J
s2
2

2 exp(i(k1φ1 + k2φ2))

where k1, k2 
= 0 satisfy the condition

k1

k2
= −m

n
. (67)

Thus Zr 
= 0 if r � n + m, independent of the parity of r.
Consider the cases n : m = 1 : 1, 1 : 3 and 3 : 1. In these cases Z4 contains some Fourier

modes depending on the angles. Looking again to equation (27) we find the terms

χr+4 = −D−1
ω {χr+2, Z4} + · · · = D−1

ω

{
D−1

ω {χr, Z4}, Z4
}

+ · · · . (68)

But the Poisson bracket of Z4 with χr introduces now new Fourier modes in χr+2, different
from the Fourier modes of χr , because the normal form term Z4 contains some Fourier modes
of order higher than zero. Similarly, new Fourier modes are introduced in χr+4 by the Poisson
bracket of χr+2 with Z4. Therefore, in the resonant case we have non-repetition paths, which
appear also in the Lie generating function. The sequence generated by equation (30), for
s = 4, leads now to the recursion (say, for r odd)

‖χr‖ ∼ O(r)

ar

‖χr−2‖ ∼ · · · ∼ O(r)O(r − 2) · · · O(3)

arar−2 · · · a3
. (69)

However, there is a lower bound for the denominators ar , ar+2, . . . . This is because at any
order the denominator corresponding to a resonant Fourier mode exp(i(k ·φ)) is equal to zero,
i.e. k · ω = 0, and such a mode cannot appear in χr , but it appears only in the normal form.
The continued fraction expansion of the rational ratio ω2/ω1 has a finite number of truncates
q1/p1, q2/p2, . . . , qn/pn, where qn/pn = ω2/ω1. Thus for any divisor ar in the generating
function we have

|ar | � a = |qn−1ω1 − pn−1ω2| (70)
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Figure 10. Same as in figure 5, for the frequencies ω1 = √
1.6, ω2 = √

0.9, with frequency ratio
4 : 3. The solid lines represent average power law fittings.

where a = O(|ω|), and the estimate (69) takes the form

‖χr‖ ∼ r!1/2. (71)

A similar estimate is found in the case n : m = 1/2 (or 2/1). In this case the normal
form Z3 contains some Fourier modes depending on the angles, and these modes act exactly
as above for the generating function calculated at every odd order.

On the other hand, if we are in a higher order resonance n : m with n + m > 4, then,
with similar arguments, we find terms in the generating function which grow as r!

1
n+m−2 . For

example, if we are in the 5 : 1 resonance, we have terms growing as r!
1
4 by the sequence

χr+8 = −D−1
ω {χr+4, Z6} + · · · = D−1

ω

{
D−1

ω {χr, Z6}, Z6
}

+ · · · . (72)

However, these terms are not the most important. Besides these terms, the terms produced by
the sequence given by equation (68) grow exactly as in the non-resonant case, because Z4 does
not contain terms depending on the angles. Thus the sequence (68) generates terms which
grow exactly in the same manner as in the non-resonant case, i.e., they produce a piecewise
geometrical growth with a factor λr given by equation (38). If we calculate λr as a function of
r in the case of high-order resonances we find that this function behaves as in the non-resonant
case, namely it increases by abrupt steps. For example, figure 10 shows λr as a function of r
for the resonance 4 : 3

(
ω2

1 = 1.6, ω2
2 = 0.9

)
considered in our previous paper. In this case we

can find an average power law

λr � 0.9r1.2 r even, λr � 1.4r1.1 r odd. (73)

The power exponent is close to 1 for both even and odd orders. This is expected since we get
only an O(r) contribution from the numerator of equation (38).

The plateaux formed by λr (figure 10) are of constant length (equal to n+m) which makes
them look smaller, on a logarithmic scale, as r increases. However, each plateau corresponds
to modes the size of which provides a dominant contribution to the series for an interval of
values of r much larger than m + n. This is due to the delay mechanism. Let r0 be the order
at which a new step appears in λr . Then, the next step appears at r ′

0 = r0 + n + m. Thus we
have λr0 ∼ r0 and λr0′ ∼ r ′

0 + n + m. The corresponding Fourier modes grow independently
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and geometrically. They become of equal size after ν steps following r ′
0, where ν satisfies the

equation

(r0 + n + m)ν � rν+n+m
0 (74)

which yields the estimate

ν � (n + m) log r0

log
(

r0+n+m

r0

) . (75)

In the limit r0 � n + m the above equation tends to

ν � r0 log r0. (76)

This formula is similar to equation (56), but with r0 in the numerator instead of the difference
r ′

0 − r0. This fact means that the delay increases as r0 increases. Thus, the factor λr0 is
dominant for at least r0 double steps, which means that the growth of the Fourier modes in
the generating function with this particular factor is O(rr/2) ∼ r!1/2 on average (but the true
function has abrupt steps). For high-order resonances, this growth is much more important
than the growth r!

1
n+m−2 induced by non-repetition paths.

The conclusion is that in the resonant case the generating function grows on average as
‖χr‖ ∼ r!1/2. However, the growth is by abrupt steps in the case of high-order resonances
n : m, n + m > 4, while it is rather smooth in the case of low-order resonances n + m � 4.
This explains the results found in our previous paper, namely that Nopt depends smoothly on ρ

in the 1 : 1 resonance, but the dependence is by abrupt steps in a higher order (4 : 3) resonance.

5. Conclusions

We study the asymptotic properties of formal integral series in the neighbourhood of an
elliptic equilibrium in 2 DOF Hamiltonian nonlinear dynamical systems. In particular, we
examine in detail the way by which the accumulation of small divisors affects the size of the
remainder and the optimal order of truncation of formal series. Our study is both numerical
by calculating the series up to a high order, and analytical, by making appropriate estimates
in terms of both the Lie generating function series and the formal integral series produced by
a direct method. The main conclusions are the following:

(1) In the non-resonant case, the overall behaviour of the perturbation series is essentially
determined by repetition of Fourier terms. Under the action of a generating function
of order r no new Fourier modes are generated up to order 2r , while the modes
appearing in the generating function are repeated at every successive order. This creates
a repetition path of period 1. New Fourier modes at any order r are introduced after r − 1
transformations only by the terms of order r of the Hamiltonian.

(2) The repetition paths generate sequences of terms that grow independently and
geometrically. The growth of the overall size of the series is determined by the fastest
growing Fourier mode. The geometrical factor λr of the fastest growing mode may be
explicitly evaluated, and is given by equation (38). The factor λr increases by abrupt
steps at the orders r where new diophantine divisors appear. Thus, the behaviour of λr is
determined essentially by the number theoretical properties of the frequency ratio ω2/ω1.
Repetition paths of period greater than 1 do appear, as well as modes that are generated
by non-repetition paths. However, these modes are dominated by the repetition paths of
period 1.
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(3) The same phenomena occur also in the series generated by a direct construction of first
integrals. Thus, the formal series produced by the direct method grows in the same way
as the series produced by the normal form with Lie series, although the two series are not
formally equivalent.

(4) At an order where a new mode appears with a smaller denominator, its size is smaller
than the size of the current dominant term. Thus, the new mode becomes dominant only
after a certain number of steps. We call this phenomenon a ‘delay’ and provide analytical
estimates for it (section 2.3). There are also transient intervals of values of r in which
two modes have about equal size. Such intervals produce an ‘inversion’ phenomenon,
namely, a third mode with larger divisor may become dominant for a transient number of
iterations.

(5) The behaviour of the function λr is related to the behaviour of the function Nopt(ρ), i.e. of
the optimal order of truncation as a function of the distance from the elliptic equilibrium.
In particular, the plateaux of the function λr , together with the delay estimates, provide
an explanation for the plateaux of the function Nopt(ρ). In the case where many plateaux

appear, an average power law of the form Nopt = O
(
ρ

−2
1+τ−b

)
is found, where τ is a

diophantine constant (see equation (2)) and b is a delay constant, b < 1. This law is
found theoretically and it agrees well with the law found numerically by calculating the
remainder of the formal series up to order 120.

(6) Similar effects, as in the non-resonant case, appear also in the resonant case for resonances
n : m with n + m > 4. The formal series in such resonances grow in the same stepwise
manner as the series in non-resonant cases. This is because the function λr increases by
abrupt steps, and the repetition modes created by the non-resonant terms of the normal
form can be shown to have a size larger than the size of the modes created by the resonant
part of the normal form. However, the reverse is true in low-order resonances n + m � 4.
This explains the differences found numerically in our previous paper (Contopoulos et al
2003) for the 1 : 1 resonance and for a higher order (4 : 3) resonance.
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Giorgilli A 1999 Hamiltonian Systems with Three or More Degrees of Freedom ed C Simo (Dordrecht: Kluwer)
Gustavson F 1966 Astron. J. 71 670



10858 C Efthymiopoulos et al

Haller G 1999 Chaos Near Resonance (Berlin: Springer)
Hori G I 1966 Publ. Astron. Soc. Japan 18 287
Kaluza M and Robnik M 1992 J. Phys. A: Math. Gen. 25 5311
Lochak P 1992 Russ. Math. Surv. 47 57
Morbidelli A and Giorgilli A 1997 Physica D 102 195
Nekhoroshev N N 1977 Russ. Math. Surv. 32 1
Niederman L 1998 Nonlinearity 11 1465
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